

Towards an Autonomic Cluster Management System (ACMS)

with Reflex Autonomicity

Walt Truszkowski1, Mike Hinchey1 and Roy Sterritt2

1NASA Goddard Space Flight Center

Information Systems Division
Greenbelt, MD, USA

walt.truszkowski@nasa.gov
michael.g.hinchey@nasa.gov

2University of Ulster
School of Computing and Mathematics

Jordanstown Campus
Northern Ireland

r.sterritt@ulster.ac.uk

Abstract

Cluster computing, whereby a large number of simple
processors or nodes are combined together to
apparently function as a single powerful computer, has
emerged as a research area in its own right. The
approach offers a relatively inexpensive means of
providing a fault-tolerant environment and achieving
significant computational capabilities for high-
performance computing applications. However, the task
of manually managing and configuring a cluster quickly
becomes daunting as the cluster grows in size.
Autonomic computing, with its vision to provide self-
management, can potentially solve many of the
problems inherent in cluster management. We describe
the development of a prototype Autonomic Cluster
Management System (ACMS) that exploits autonomic
properties in automating cluster management and its
evolution to include reflex reactions via pulse
monitoring.

1. Introduction

NASA Goddard Space Flight Center (GSFC) conducts
research and development in a wide range of topics and
areas in the field of information technology. These
include areas such as advanced knowledge management,
data/information visualization, semantic-web and sensor-
web technologies, and grid computing, amongst others.

The primary aim of this research is to support NASA
missions and projects. This includes applications that
involve the collection and management of extremely
large datasets and the use of very complex models for
manipulating and interpreting science data collected by
various NASA instruments and missions.

The successful completion of GSFC’s science data
and information processing objectives often entails the
solution of large distributed computational problems,
such as the management and simulation of complex

Earth-modeling systems. Many of these problems are so
computationally demanding that some form of High
Performance Computing (HPC) is essential [3].

In an increasingly cost-focused environment, less
expensive options are now needed. We report on
continuing work on providing HPC through a cluster, its
requirement to be self-managing, and the ongoing efforts
to achieve this autonomicity.

2. Cluster Computing to Provide HPC

Traditionally, Massively Parallel Processing (MPP)
computer systems have been used to meet high
performance computing requirements. MPP computers
may contain hundreds or thousands of processors within
a single computer system. Typically, upgrading such
systems requires a complete rebuild of the system. They
are, however, relatively simple to manage, and they
certainly perform very well. A recent trend in high
performance computing research has been to find new
approaches to overcome the cost and scalability issues
associated with MPP systems, such as clusters and grids.

The concept of a cluster is to take two or more
computers and organize them to work together to
provide higher availability, reliability and scalability.
When failure occurs, resources can be redirected and the
workload can be redistributed. As such, a cluster is
composed of a collection of inexpensive individual
computers, referred to as ‘nodes’, that are connected
together via a network and configured so as to appear to
the user as a single powerful computer. However, the
approach opens up an arena of different complexity
challenges in terms of management, configuration, and
security. Rather than administering a single computer,
management and configuration tasks on a cluster must
be performed on every node. As a consequence,
Autonomic Computing is particularly relevant.

3. Autonomic Cluster Management

Autonomic computing offers the potential of solving
many of the problems inherent in cluster management.

By definition, an autonomic system is one that, at a
minimum, exhibits the self-managing properties of being
self-configuring, self-optimizing, self-healing, and self-
protecting, through self-awareness and environment
awareness [1]. Like the autonomic nervous system of
the human body, an autonomic system should react to
events without conscious thought, but rather as a reflex
[2]. Using this initial set of autonomic properties as a
guide, we have designed and implemented a prototype
Autonomic Cluster Management System (ACMS).

3.1 Autonomic properties

Obviously the main autonomic properties required in a
cluster system to provide continual load balancing are
self-configuration and self-optimization. Self-healing is
critical to ensure dependability, continuity of
availability, and reliability. Self-protection is utilized to
safeguard the cluster system from misuse; this is
especially vital when one considers that nodes may be
end-user machines distributed throughout the
organization [3].

Self- and environmental awareness are achieved by
virtue of the properties of agents, viz. being autonomous,
reactive, goal-driven and temporally continuous [7].

3.2 The ACMS Prototype

The ACMS is a mobile agent system composed of a
number of agent processes communicating across a
network of nodes. The system consists of three types of
agents, each with functionality implementing autonomic
system properties, namely General Agents, Optimization
Agents, and Configuration Agents.

Specifically, the ACMS is comprised of two
Configuration Agents and one Optimization Agent per
implementation, and two General Agents per node.

Each agent is designed to be specific-purpose, and to
perform a particular task. The community of agents
collaborates to achieve a common goal, specifically
providing autonomic management of a cluster, while
simultaneously maximizing performance by
implementing load-balancing techniques on the system.

Figure 1 illustrates the architecture of the prototype
system.

 Figure 1. Architecture of the Prototype

3.2.1 Configuration Agent

The purpose of the Configuration Agent (CA) is to
provide the ability to self-configure within the system,
providing self-healing and self-protecting facilities.

Its functionality consists of maintaining a current list
of all the agents in the system and making this
information available to other agents upon request.

When an agent first comes on-line it broadcasts to the
CA’s multicast address stating that it has joined the
system. The CA examines the table to ensure that the
new agent is needed (e.g., an unneeded third CA
attempting to come on-line, in which case a termination
message is sent back to the agent).

In addition, the CA cycles through the database of
agents asking each if it is still functioning properly. If
the CA is incapable of establishing a connection with an
agent, it is assumed that the agent is no longer
functioning correctly and will be restarted. Otherwise,
the agent responds with a list of information such as the
address and port number, agent type, and its system
statistics (processor speed, number of processors, total
memory, free memory, etc.). This list of information can
be easily expanded to include requests for other
information, in the future, if necessary. When the CA
receives this information it updates the database.

The system contains both a primary and a secondary
CA to support redundancy and the self-healing
autonomic property. Ideally, the two CAs would be on
different nodes in the system so that if one node stops
responding there would be at least one CA still
functioning. The reason for redundancy is that the
database is stored in memory locally by the CA.
Therefore, if the CA stops functioning for any reason, all

the information would be lost. The secondary CA
synchronizes with the primary one and maintains a copy
of the database. Only the primary CA performs system
configuration tasks. However, if the primary CA were to
stop functioning, the secondary one would be able to
continue in the role of the primary CA. In this case the
Optimization Agent would detect that there was only one
CA functioning and recreate a second CA.

3.2.2 Optimization Agent

The purpose of the Optimization Agent (OA) is to make
the system self-optimizing. The role of the OA within
the system is first to contact the CA for a current copy of
the database. Once received, the OA begins analysis of
the database to ensure that there are the correct number
and types of agents in the system.

If it finds the configuration to be incorrect, it sends
commands to create or kill one or more agents,
stabilizing the system. After performing a brief analysis
of the system, it then begins observing the loads and
statistics of each node, noting the lightly and heavily
loaded nodes.

When an application needs to start a new process, the
OA searches for the first node that is not heavily loaded.
It contacts a General Agent on that node and commands
it to start the requested process. The OA has the
capability to move agents and processes from one node
to another, allowing for load balancing of processes.

No redundancy is built in to the OA because it does
not store any important information. If the agent were to
stop responding, the CA could easily recreate it. The
only loss that occurs is any analysis of the table that the
previous OA had completed.

3.2.3 General Agent

The main function of each General Agent (GA) is to
execute the commands sent to it by the other agents.

These commands are either to start or stop processes
running on its node, to spawn a new agent, or to
terminate itself. Termination gives the CA and OA the
ability to start any type of agent on any node in the
system. Redundancy is built into the GAs.

 The reason is not to preserve data, but to ensure that
a node will remain part of the system. If there were only
one GA on a node, and that agent stopped responding,
the entire node would be disconnected from the system.
However, if there are two GAs per node and one fails,
the remaining agent can recreate the failed GA. Once
again this behavior satisfies the self-healing autonomic
property, reducing the need for human maintenance and
intervention.

3.2.4 System Topology

Our prototype system utilizes a hybrid centralized and
decentralized design, as shown in Figure 2.

The system acts in a centralized manner, all
information being contained in the Primary CA.

The database which is maintained contains
information regarding all extant agents in the system.
Since all information is held in one location, the system
becomes easily maintainable and coherent.

However, fault tolerance is handled in a decentralized
manner. Data is redundant with both a primary and
secondary CA. Also, there is replication of agents if any
fail or are shutdown.

Decentralized systems can be insecure because nodes
can join at any point and start sending data that may be
incorrect. However, all message transfer in our
prototype is encrypted. Therefore, any node that joins
the system would not be able to communicate with other
agents unless the correct certificates were used.

 Figure 2. System Topology

Although the system’s decentralized topology creates
some security challenges, this type of topology
facilitates scalability. Any new nodes with the correct
certificates can join the system and immediately begin
communicating with other agents.

3.2.5 Network Communication

The communications system is important in any
distributed or clustered system, but its role in an
autonomic system is of even greater significance.

In addition to providing a mechanism for transferring
data across a network, our prototype also has to satisfy
the self-protecting autonomic property. We originally
chose to implement this property by encrypting all
system communication, to reduce the possibility of an
attacker gaining unauthorized access to system
commands by monitoring unencrypted network traffic.

However, in addition to the peer-to-peer
communication between nodes, we realized that in
certain cases we would need to broadcast a message to a
group of agents. We later discovered that there is
currently no way of encrypting broadcast messages,
because broadcasts use the User Datagram Protocol
(UDP) instead of the connection-oriented Transmission
Control Protocol (TCP) used by secure protocols.

We decided that the messages that needed to be
broadcast to the entire system would not contain any
sensitive information, so they could be transmitted
unencrypted.

Java has built-in support for SSL, a popular and
trusted method for transferring encrypted data across
networks. We decided that SSL was sufficient to meet
the needs for our secure peer-to-peer communication
because it is capable of using strong 2048-bit
encryption. Implementing it would not be much more
difficult than using standard network communications
because of the excellent SSL support in Java [6]. We
chose to use 2048-bit RSA encryption, and generated the
keystore and truststore files. The keystore holds our
private key, and the truststore tells the system to trust
this key. These two files must be present on all nodes of
the system for SSL communication to function.

Although we needed a method for sending a message
to multiple agents simultaneously, broadcasting seemed
inefficient. It was not necessary for all agents on every
node to receive a broadcast. Each message that is sent is
only destined for a certain group of agents, and a
broadcast message will never need to be sent to all
agents in the system. Since broadcasting to the entire
system is not necessary, we decided instead to use
multicasting.

3.2.6 Evaluation of the Prototype

The ACMS prototype has been evaluated both from

the autonomic management capabilities (seventeen
operational scenarios - such as hanging of general agent)
and the performance overhead of the ACMS [3]. While
achieving the benefits of a cluster, the overhead
associated with running the ACMS was 5% in the worst-
case (all management agents running on the same node).
As the number of nodes increased the overhead
decreased to less than 0.75%.

4. Future Work

Part of the motivation behind this work is to

investigate different autonomic approaches and
mechanisms and to test these against each other.

It is planned that in the next version of the ACMS
(Figure 3) the agents function will be extended to
include a heartbeat (sending of a periodic ‘I am alive’
signal) [8]. This would allow a change in the procedure
for fault tolerance, as opposed to the current approach
where the configuration agent polls all the agents.

HeartbeatsH Health Agent

H

Pulses

Reflex System

 Figure 3. Extending the Architecture

This will also allow the provision of localized fail-over
on the node; i.e., instead of the current approach of the
CA noticing an agent has failed (through polling) on a
remote host and instructing the switch over to the
secondary agent on that remote host, this can occur
locally via the secondary agent monitoring the heartbeat
from the primary agent and thus providing a tighter and
situated reflex reaction upon failure.

The primary and secondary CAs will also utilize the
same mechanism with heartbeats between them
(typically on separate hosts to increase fault tolerance).

Self-healing is currently provided for through
redundant agents and the CA polling the agents. The
next version will include a new agent type – a health
agent. Its function, in collaboration with the CAs and
OAs, will be to monitor vital signs on the hosts in an
attempt to predict if a host is having difficulties and a
failure is imminent.

The health agent will be facilitated by pulse
monitoring – the extension of heartbeat monitoring from
‘I am alive’ signals to include health information within
the signal, akin to measuring the pulse [8][9]. In this
scenario the local agents may fail-over with a new

secondary agent being created, yet if this starts to occur
frequently this may indicate the host itself is unstable.
The health agent can monitor developing scenarios and
work with the configuration agent to avoid allocating
work to unstable hosts.

5. Related Work

A HIVE is a software environment built from large
numbers of dedicated, commodity computers. A HIVE is
intended for running transaction-based applications [4]
and provides properties such as self-organizing, self-
healing and self-maintaining. HIVE is built on the
principle that all nodes share the workload and if any
one (or more) fails, then the work is restarted at a
suitable point and split into as many equal parts as there
are available nodes. This means that all machines are
doing the same amount of work but at no time will any
machine be working at its full potential, thereby
reducing the risk of operating system failure.

Microsoft clustering technologies [7] in Windows
2000 and Windows Server 2003 uses a three-part
clustering strategy that includes Network Load
Balancing, designed to address bottlenecks caused by
front-end Web services; Component Load Balancing,
designed to address the unique scalability and
availability needs of middle-tier applications; and Server
Cluster Load Balancing designed to provide fail-over
support for back-end applications and services, such as
provided by database servers.

IBM’s pSeries has self-configuring features such as
Reliable, scalable cluster technology (RSCT) and PSSP
cluster management.

A server cluster provides high availability by making
application software and data available on several
servers linked together in a cluster configuration. If a
server stops functioning, automated fail-over is provided
shifting the workload of the failed server to another
server in the cluster. The fail-over process is designed to
ensure continuous availability for critical applications
and data.

While clusters can be designed to handle failure, they
are not fault tolerant with regard to user data. Typically,
the recovery of lost work is handled by the application
software.

6. Conclusions

We have described an experimental project to develop a
prototype Autonomic Cluster Management System,
suitable for use in cluster-based high-performance
computing. The prototype has been evaluated and
demonstrated to be scaleable. While the sample space
for our experimentation was small, we are encouraged

by seeing a decrease in overhead for the ACMS as the
cluster size grows, with a simultaneous (almost 100%)
expansion in processing power.

Future autonomic extensions of this work will include
adding a health agent, heartbeat monitoring and pulse
monitoring. Clusters tend to have (relatively) static
resources, as opposed to the dynamic nature of the grid.
As requirements from the scientific community grow in
the future, this research will likely evolve from an
autonomic cluster to an autonomic grid.

Acknowledgements

This work is based on extending the ACMS prototype
system developed for NASA GSFC by the WPI students:
J.D. Baldassari, C.L. Kopec and E.S. Leshay [3]. It is
supported in part in the NASA Goddard Space Flight
Center Information Systems Division, and the University
of Ulster Computer Science Research Institute and the
Centre for Software Process Technologies (CSPT),
funded by Invest NI through the Centres of Excellence
Programme under the European Union Peace II
initiative.

References

[1] P. Horn, “Autonomic computing: IBM perspective on the

state of information technology”, NY, 15th October 2001.
[2] IBM, “An architectural blueprint for autonomic

computing”, IBM Corporation, April 2003.
[3] J.D. Baldassari, C.L. Kopec, E.S. Leshay, W.

Truszkowski, D. Finkel, “Autonomic Cluster
Management System (ACMS): A Demonstration of
Autonomic Principles at Work”, Proc. IEEE Workshop
on the Engineering of Autonomic Systems (EASe 2005)
at ECBS 2005, MD, USA, 4-8 April, pp 512-518.

[4] Hive Computing http://www.tsunamiresearch.com/, 2004.
[5] Microsoft, “Windows Clustering Technologies – An

Overview”, Microsoft Corporation, 2004.
http://www.microsoft.com/windows2000/techinfo/planni
ng/clustering.asp

[6] J. Garms and D. Soerfield, Professional Java Security,
APress, Berkeley, CA, 2003.

[7] D.B. Lance, M. Oshima, “Programming and deploying
Java Mobile Agents with Aglets”, Addison-Wesley, 1998.

[8] R. Sterritt, “Pulse Monitoring: Extending the Health-
check for the Autonomic GRID”, Proceedings of IEEE
Workshop on Autonomic Computing Principles and
Architectures (AUCOPA 2003) at INDIN 2003, Banff,
Alberta, Canada, 22-23 August 2003, pp 433-440.

[9] R. Sterritt, D. Gunning, A. Meban, P. Henning,
“Exploring Autonomic Options in an Unified Fault
Management Architecture through Reflex Reactions via
Pulse Monitoring”, Proc. IEEE Workshop on the
Engineering of Autonomic Systems (EASe 2004) at
ECBS 2004, Brno, Czech Republic, 24-27 May, pp 449-
455.

